Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells

Identifieur interne : 000674 ( Main/Repository ); précédent : 000673; suivant : 000675

Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells

Auteurs : RBID : Pascal:13-0281496

Descripteurs français

English descriptors

Abstract

In this study, highly (112) oriented crystalline copper indium disulfide (CuInS2) thin films with high mobility have been deposited via ultrasonic spray pyrolysis. Structural and electrical properties of CuInS2 thin films were examined to utilize them in solar cell applications. Various amounts of precursor solution ranging from 0.25 to 2.02 ml/cm2 were used to form CuInS2 thin films onto the soda lime glass substrates. Scanning electron microscopy (SEM) analysis revealed that all sprayed films were pin-hole and crack free. Atomic percent ratios of the Cu/In and S/In were very close to the targeted stoichiometric ratios of 1/1 and 2/1, respectively. X-ray diffraction (XRD) studies revealed that all the deposited films were polycrystalline and exhibiting the chalcopyrite structure. Optical band gap energy of the films were calculated as 2.85 eV and decreased to 1.40 eV by increasing the solution loading. Hopping mechanism could be considered as the dominant conduction mechanism in the studied temperature range. Carrier concentrations in CuInS2 films were ranging between 1015 and 1017 cm-3. Mobility and the carrier concentration of the CuInS2 thin films deposited from 1.52 ml/cm2 solution loading were 40.1 cm2/V s and 1.69 × 1017, respectively. At last but not least, the amount of solution used in this study to form CuInS2 thin films was one of the lowest values reported in the literature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0281496

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells</title>
<author>
<name sortKey="Sankir, Nurdan D" uniqKey="Sankir N">Nurdan D. Sankir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aydin, Erkan" uniqKey="Aydin E">Erkan Aydin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unver, Hulya" uniqKey="Unver H">Hulya Unver</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uluer, Ezgi" uniqKey="Uluer E">Ezgi Uluer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parlak, Mehmet" uniqKey="Parlak M">Mehmet Parlak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Middle East Technical University</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0281496</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0281496 INIST</idno>
<idno type="RBID">Pascal:13-0281496</idno>
<idno type="wicri:Area/Main/Corpus">000888</idno>
<idno type="wicri:Area/Main/Repository">000674</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-092X</idno>
<title level="j" type="abbreviated">Sol. energy</title>
<title level="j" type="main">Solar energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Chalcopyrite</term>
<term>Chalcopyrite structure</term>
<term>Copper</term>
<term>Copper sulfide</term>
<term>Crack</term>
<term>Crystalline material</term>
<term>Electrical characteristic</term>
<term>Electrical properties</term>
<term>Indium</term>
<term>Indium sulfide</term>
<term>Multilayer coating</term>
<term>Polycrystal</term>
<term>Profitability</term>
<term>Pyrolysis</term>
<term>Scanning electron microscopy</term>
<term>Soda-lime glasses</term>
<term>Solar cell</term>
<term>Spray coating</term>
<term>Ternary compound</term>
<term>Thin film</term>
<term>Thin film cell</term>
<term>Ultrasound</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rentabilité</term>
<term>Matériau absorbant</term>
<term>Revêtement multicouche</term>
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Ultrason</term>
<term>Pyrolyse</term>
<term>Dépôt projection</term>
<term>Caractéristique électrique</term>
<term>Propriété électrique</term>
<term>Verre sodocalcique</term>
<term>Microscopie électronique balayage</term>
<term>Fissure</term>
<term>Diffraction RX</term>
<term>Polycristal</term>
<term>Structure chalcopyrite</term>
<term>Matériau cristallin</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Composé ternaire</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Couche mince</term>
<term>Chalcopyrite</term>
<term>CuInS2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Rentabilité</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, highly (112) oriented crystalline copper indium disulfide (CuInS
<sub>2</sub>
) thin films with high mobility have been deposited via ultrasonic spray pyrolysis. Structural and electrical properties of CuInS
<sub>2</sub>
thin films were examined to utilize them in solar cell applications. Various amounts of precursor solution ranging from 0.25 to 2.02 ml/cm
<sup>2</sup>
were used to form CuInS
<sub>2</sub>
thin films onto the soda lime glass substrates. Scanning electron microscopy (SEM) analysis revealed that all sprayed films were pin-hole and crack free. Atomic percent ratios of the Cu/In and S/In were very close to the targeted stoichiometric ratios of 1/1 and 2/1, respectively. X-ray diffraction (XRD) studies revealed that all the deposited films were polycrystalline and exhibiting the chalcopyrite structure. Optical band gap energy of the films were calculated as 2.85 eV and decreased to 1.40 eV by increasing the solution loading. Hopping mechanism could be considered as the dominant conduction mechanism in the studied temperature range. Carrier concentrations in CuInS
<sub>2</sub>
films were ranging between 10
<sup>15</sup>
and 10
<sup>17</sup>
cm
<sup>-3</sup>
. Mobility and the carrier concentration of the CuInS
<sub>2</sub>
thin films deposited from 1.52 ml/cm
<sup>2</sup>
solution loading were 40.1 cm
<sup>2</sup>
/V s and 1.69 × 10
<sup>17</sup>
, respectively. At last but not least, the amount of solution used in this study to form CuInS
<sub>2</sub>
thin films was one of the lowest values reported in the literature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-092X</s0>
</fA01>
<fA02 i1="01">
<s0>SRENA4</s0>
</fA02>
<fA03 i2="1">
<s0>Sol. energy</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SANKIR (Nurdan D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AYDIN (Erkan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>UNVER (Hulya)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ULUER (Ezgi)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARLAK (Mehmet)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Middle East Technical University</s1>
<s2>Ankara</s2>
<s3>TUR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>21-29</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8338A</s2>
<s5>354000505814540030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0281496</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, highly (112) oriented crystalline copper indium disulfide (CuInS
<sub>2</sub>
) thin films with high mobility have been deposited via ultrasonic spray pyrolysis. Structural and electrical properties of CuInS
<sub>2</sub>
thin films were examined to utilize them in solar cell applications. Various amounts of precursor solution ranging from 0.25 to 2.02 ml/cm
<sup>2</sup>
were used to form CuInS
<sub>2</sub>
thin films onto the soda lime glass substrates. Scanning electron microscopy (SEM) analysis revealed that all sprayed films were pin-hole and crack free. Atomic percent ratios of the Cu/In and S/In were very close to the targeted stoichiometric ratios of 1/1 and 2/1, respectively. X-ray diffraction (XRD) studies revealed that all the deposited films were polycrystalline and exhibiting the chalcopyrite structure. Optical band gap energy of the films were calculated as 2.85 eV and decreased to 1.40 eV by increasing the solution loading. Hopping mechanism could be considered as the dominant conduction mechanism in the studied temperature range. Carrier concentrations in CuInS
<sub>2</sub>
films were ranging between 10
<sup>15</sup>
and 10
<sup>17</sup>
cm
<sup>-3</sup>
. Mobility and the carrier concentration of the CuInS
<sub>2</sub>
thin films deposited from 1.52 ml/cm
<sup>2</sup>
solution loading were 40.1 cm
<sup>2</sup>
/V s and 1.69 × 10
<sup>17</sup>
, respectively. At last but not least, the amount of solution used in this study to form CuInS
<sub>2</sub>
thin films was one of the lowest values reported in the literature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rentabilité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Profitability</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rentabilidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Revêtement multicouche</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Multilayer coating</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Revestimiento multicapa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ultrason</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ultrasound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ultrasonido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pyrolyse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Pyrolysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pirólisis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dépôt projection</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Spray coating</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Depósito proyección</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fissure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crack</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fisura</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Structure chalcopyrite</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Chalcopyrite structure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estructura calcopirita</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>266</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000674 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000674 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0281496
   |texte=   Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024